MMWR
MORBIDITY AND MORTALITY WEEKLY REPORT

537 Injuries Among Railroad Trespassers - Georgia, 1990-1996
541 Measles Control - South-East Asia Region, 1990-1997
545 Outbreak of Influenza A Infection Among Travelers - Alaska and the Yukon Territory, May-June 1999

Injuries Among Railroad Trespassers - Georgia, 1990-1996

Railroad trespassers are persons on railroad property whose presence is prohibited or unlawful. Most trespassers are walking along or across railroad tracks (1). In 1997, fatalities to railroad trespassers became the leading cause of railroad-related deaths in the United States (2) (Figure 1). In 1998, 513 persons were injured and 536 persons were killed while trespassing (Federal Railroad Administration, unpublished data, 1999). This report presents three incidents in which trespassers were injured or killed and summarizes a study of fatal and nonfatal injuries to railroad trespassers in Georgia from 1990 through 1996.

FIGURE 1. Deaths at highway rail crossings and among railroad trespassers, by year - United States, 1975-1998

Source: Federal Railroad Administration.

Injuries Among Railroad Trespassers - Continued

Case Reports

Case 1. In April 1991, a 20 -year-old man and 19 -year-old woman were killed at approximately 11:40 p.m. when caught between two freight trains traveling in opposite directions. He and his companion were watching a northbound train when they were sideswiped by a southbound train on adjacent tracks. The man reportedly had previously walked along the tracks at night. Both deceased persons tested positive for alcohol, marijuana, and codeine.

Case 2. In July 1995, a 42-year-old man suffered superficial abrasions when he was struck at approximately 1 p.m. while attempting to cross in front of a freight train traveling at 10 mph . The man had been found trespassing and intoxicated 3 days before the incident and given a warning. Toxicology results were not available for the day of the injury, but police reported he smelled of alcohol and had slurred speech.

Case 3. In January 1996 at approximately 8 a.m., a 38 -year-old man died when struck by a passenger train traveling at 64 mph . As he crossed the tracks on his way to work, he apparently did not see the train approaching behind him and did not respond to the train's horn until just before he was hit. Toxicology results were negative.

Study Results

In accordance with the reporting practices of the Federal Railroad Administration (3), an injury to a railroad trespasser was defined as the unintentional injury of any person whose presence on railroad property was prohibited by law in Georgia during 1990-1996. Data on trespasser injuries were provided by the 17 railroad companies operating in the state. Additional information was obtained from the state medical examiner, county medical examiners and coroners, the Georgia Center for Health Information, the Georgia Bureau of Investigation, the Federal Railroad Administration, and newspaper reports. Railroad data included only incidents involving trains; data from the Metropolitan Atlanta Rapid Transit Authority, the only subway system in the state, were excluded. If multiple specimens from a fatally injured person were tested for alcohol concentration, the lowest value obtained from blood was used for data analysis. If a blood sample was not obtained, the alcohol concentration of another body fluid (e.g., vitreous humor) was used. A positive test was defined as an alcohol concentration greater than zero; intoxication was defined as $\geq 100 \mathrm{mg} / \mathrm{dL}$ of alcohol. Denominators vary for some categories because of missing data.

During 1990-1996, 276 incidents involving 288 trespassers were reported by five railroads in Georgia. Trespasser injuries were reported by Norfolk Southern (58\%), CSX (41\%), Amtrak (1\%), Georgia Northeastern (<1\%), and Georgia Southwestern ($<1 \%$). Thirty-seven to 48 trespassers were injured each year (Figure 2). Of the 288 injured trespassers, 132 (46%) died from their injuries (mean: 19 deaths per year). The median age of injured trespassers was 31 years (range: 1-92 years); 11% were children (aged <18 years) and 5% were elderly (aged ≥ 65 years). Most (71%) trespassers were aged 20-49 years; 88% were male. Fifty-six percent of trespassers were injured during March-August; 51\% were injured on Friday, Saturday, or Sunday. Fifty-nine percent of trespassers were injured during 6 p.m. -6 a.m. Most of the trespassers were injured in the city (60%) or county (73%) where they resided.

Incidents occurred in 65 counties in the state; 40% of injuries occurred in five counties (Fulton County, 50 trespasser injuries; Cobb County, 27; Muscogee County, 15; DeKalb County, 13; and Richmond County, nine). These five counties are part of three

Injuries Among Railroad Trespassers - Continued
FIGURE 2. Number of injuries to railroad trespassers, by year - Georgia, 1990-1996

of the five largest metropolitan areas in the state and accounted for 32% of the 1990 population of the 144 Georgia counties with railroad lines.

Toxicology results were available for 78 (59\%) of the 132 fatalities. Of these, 43 (55%) were positive for alcohol, including 40 (51%) who had alcohol levels $>100 \mathrm{mg} / \mathrm{dL}$. The median alcohol level among those who tested positive was $220 \mathrm{mg} / \mathrm{dL}$ (range: five-460 mg/dL). Fourteen persons, seven of whom had also consumed alcohol, tested positive for at least one other substance (marijuana, seven; cocaine, five; codeine, two; amphetamines, one; and LSD, one).
Reported by: J Glasgow, Georgia Operation Lifesaver, Atlanta, Georgia. J Farrell, Georgia Dept of Human Resources. WS Roberts, G Herrin, Georgia Bur of Investigation. R FinkeIstein, B George, Federal Railroad Administration. Div of Unintentional Injuries Prevention, National Center for Injury Prevention and Control; State Br, Div of Applied Public Health Training, Epidemiology Program Office, CDC.
Editorial Note: The findings of this report support those of previous studies that found most injuries to railroad trespassers involved men aged 20-49 years, many of whom were intoxicated ($1,4-10$). Few trespassers were attempting to use trains for transportation; most trespassers were either walking or socializing near the tracks at the time of injury. In many incidents, trespassers apparently did not hear the train horn or misjudged the speed or location of the train; this last problem appears to be more common when a train is approaching on one of multiple parallel sets of tracks (1,7). The apparent clustering of injuries in certain counties was largely explained by population size and degree of urbanization. The large percentage of injuries involving CSX and Norfolk Southern trains is a reflection of the size of their operations in the state; they are the largest railroads operating in Georgia. Except for Amtrak, the other railroad companies in the state are short-line railroads that account for relatively few train-miles.

Injuries Among Railroad Trespassers - Continued

Although the number of deaths from motor-vehicle collisions with trains at highway rail crossings has decreased, deaths among trespassers have increased. The decline in deaths at highway rail crossings probably resulted from multiple factors such as education efforts (e.g., Operation Lifesaver, a nationwide public education program designed to eliminate collisions, injuries, and deaths at highway rail intersections and on railroad rights-of-way) and engineering changes (e.g., installation of active warning systems and closure of redundant crossings). Efforts to prevent trespasser deaths have received less attention, and the target audience (adult males who abuse alcohol) may be difficult to reach.

The findings in this report are subject to at least three limitations. First, death investigation practices vary among the 159 counties in Georgia, and information maintained by the railroads on nonfatal injuries is limited. Second, toxicology results were not available for many persons who died and for all persons with nonfatal injuries. It is unknown whether the toxicology results of those fatalities that were tested are generalizable to all fatalities or to nonfatal injuries. Finally, some trespasser injuries reported by railroads were misclassified as to intent. For example, although injuries reported by railroads are considered unintentional by definition, the county medical examiner or coroner classified nine of the trespasser deaths as suicides and one as a homicide.

To monitor injuries to railroad trespassers accurately, better data are needed (1,10). In 1997, the Federal Railroad Administration introduced a redesigned data collection form for trespasser injuries. The form (FRA F6180.55a) should be evaluated to determine whether the new data elements provide the information necessary to characterize injuries to trespassers adequately. Further research is needed in other geographic regions of the United States; patterns described in the southeast (1,4-6) may not reflect the situation in other parts of the country, such as border states where trespassing may be related to illegal immigration. Additional research also is needed to determine the impact of altering certain aspects of railroad design and operation (e.g., fencing and speed limits). Efforts to educate the public about the dangers of trespassing, improve enforcement of existing laws, and prevent alcohol abuse should continue (1).

References

1. Pelletier AR. Deaths among railroad trespassers: the role of alcohol in fatal injuries. JAMA 1997;277:1064-6.
2. US Department of Transportation. Railroad safety statistics: annual reports, 1997. Washington, DC: US Department of Transportation, September 1998.
3. Federal Railroad Administration. FRA guide for preparing accident/incident reports. Washington, DC: US Department of Transportation, 1996.
4. Moore TJ, Wilson JR, Hartman M. Train versus pedestrian accidents. Southern Med J 1991;84: 1097-8,1102.
5. Cina SJ, Koelpin JL, Nichols CA, Conradi SE. A decade of train-pedestrian fatalities: the Charleston experience. J Forensic Sci 1994;39:668-73.
6. Davis GG, Bruce AC, Brissie RM. A 15-year review of railway-related deaths in Jefferson County, Alabama. Am J Forensic Med Pathol 1997;18:363-8.
7. National Transportation Safety Board. Safety recommendation R-78-42. Washington, DC: National Transportation Safety Board, 1978.
8. Spaite D, Criss E, Valenzuela T, Meislin HW, Odgen JR. Railroad accidents: a metropolitan experience of death and injury. Ann Emerg Med 1988;17:620-5.
9. Shapiro MJ, Luchtefeld WB, Durham RM, Mazuski JE. Traumatic train injuries. Am J Emerg Med 1994;12:92-3.

Injuries Among Railroad Trespassers - Continued
10. Lerer LB, Matzopoulos RG. Fatal railway injuries in Cape Town, South Africa. American J Forensic Med Pathol 1997;18:144-7.

Measles Control - South-East Asia Region, 1990-1997

In 1989, the World Health Assembly resolved to reduce measles morbidity and mortality by 90% and 95%, respectively, by 1995 , compared with the number of cases during the prevaccine era. In 1990, the World Summit for Children adopted a goal to vaccinate 90% of children against measles by 2000. Although these goals have not been met, progress has been achieved toward global measles control, including in the South-East Asia Region (SEAR) member countries* of the World Health Organization (WHO). By the end of 1997, estimated worldwide measles morbidity and death were reduced by 74% and 85%, respectively, and by 70% and 88%, respectively, in SEAR (1). In February 1999, representatives of the United Nations Children's Fund (UNICEF), WHO, and CDC met and recommended a regional plan of action for measles control. This report summarizes the progress in measles control in SEAR during 1990-1997 and summarizes the plans for future activities in the region.

Routine Vaccination

Except for Thailand and the Democratic People's Republic of Korea (DPR Korea), the routine vaccination schedule in SEAR countries includes a single dose of measles vaccine administered at age 9 months. In Thailand, an additional dose is recommended at school entry; in DPR Korea, the first measles vaccine dose is given at age 12 months, a second dose at age 7 years, and a third at age 17 years. In SEAR, reported vaccination coverage among children aged ≤ 1 year with a single dose of measles vaccine increased from <10\% in 1985 to $>80 \%$ in 1990 (Figure 1). Since 1990, routine measles vaccination coverage ${ }^{\dagger}$ remained stable at approximately 85%. In 1997, nine of the 10 member countries reported routine measles vaccination coverage of $>80 \%$ (Table 1).

Supplemental Vaccination

Nationwide supplemental measles vaccination campaigns were conducted in Bhutan (1995) among children aged <15 years, and in Maldives (1995-1997) among children aged 5-14 years. Subnational supplemental mass vaccination campaigns have been conducted in the region targeting high-risk ${ }^{\S}$ areas, including Bangladesh flood areas (1998), DPR Korea border areas (1995), urban centers in India (1995-1999) and in Myanmar (1995 and 1997), and in three high-risk districts in Nepal (1995). Limited information is available about the impact of these campaigns.

Measles Incidence

During 1990-1997 in SEAR, the number of reported measles cases and reported measles incidence decreased by 48% and 53%, respectively (Table 1). Indonesia, Myanmar, and Sri Lanka reported a substantial decrease in measles incidence rates,

[^0]
Measles Control - Continued

FIGURE 1. Reported measles vaccination coverage and cases - South-East Asia Region*, 1980-1997

*Bangladesh, Bhutan, Democratic People's Republic of Korea, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand.
Reported to the World Health Organization (WHO) Regional Office for South-East Asia by ministries of health of member countries.
and Bangladesh and Nepal reported large increases. In Bangladesh, the 445% increase in measles incidence in 1997 compared with 1990 primarily resulted from an expanded national reporting system; the 5070% increase in measles incidence in Nepal in 1997 compared with 1990 reflected multiple outbreaks in addition to improved case identification and reporting. DPR Korea and Maldives reported no measles cases in 1990 and 1997.

Data on age distribution of persons with measles were available from routine reports from Indonesia, Sri Lanka, and Thailand, and from outbreak investigations in Bhutan, Maldives, and Myanmar (Table 2). In Myanmar, 70\% of the cases reported from 11 townships during 1998-1999 occurred among children aged <5 years. In countries with higher vaccination coverage (Bhutan, Indonesia, Maldives, Sri Lanka, and Thailand), $>50 \%$ of cases occurred among children aged ≥ 5 years.

Plan of Action

The main objective of measles control activities in SEAR through 2003 is to reduce measles morbidity and death by 90% and 95%, respectively, compared with the prevaccine era. No goal for regional elimination of measles has been established. Member countries are divided into two groups based on their measles control level and poliomyelitis eradication status.

Measles Control - Continued

TABLE 1. Reported measles morbidity and reported routine measles vaccination coverage among children aged ≤ 1 year, by country - South-East Asia Region, 1990-1997

Country	Morbidity					Reported vaccination coverage (\%)		
	No. reported cases		Incidence*					
	1990	1997	1990	1997	Percentage change	1990	1997	Percentage change
Bangladesh	1,705	10,329	1.6	8.5	431\%	82	97	15\%
Bhutan	173	169	10.5	9.1	-13\%	79	84	5\%
Democratic People's Republic of Korea	0	0	0.0	0.0	0	98	100^{\dagger}	2\%
India	82,716	61,004	9.7	6.4	-34\%	91	81	-10\%
Indonesia	92,105	15,313	50.4	7.5	-85\%	86	92	6\%
Maldives	0	0	0.0	0.0	0	96	96	0
Myanmar	7,900	1,035	19.1	2.2	-88\%	68	88	20\%
Nepal	182	11,669	1.0	51.7	5,070\%	68	88	20\%
Sri Lanka	4,004	195	23.5	1.1	-95\%	80	94	14\%
Thailand	29,244	14,617	52.6	24.7	-53\%	70	$92^{\text {§ }}$	22\%
Total	218,029	114,331	16.5	7.7	-53\%	88	85	-3\%

* Per 100,000 population, based on population data from United Nation's World Population Report, 1996 revision.
${ }^{\dagger} 1996$ data; 1997 data were not available.
${ }^{\S}$ Based on 1996 survey data (2); data for 1997 not available.

TABLE 2. Measles cases in South East Asia Region reported by national ministries of health to the World Health Organization (WHO) - South-East Asia Region, 1995-1998

Data source	Country	Year	No. cases	Age (yrs) distribution of case-patients (\%)									
				<1		1-4		5-9		10-14		≥ 15	
				No.	(\%)								
Routine reports	Indonesia	1997	16,082	2,436	(15)	5,289	(33)	5,668	(35)*			2,689	(17)
	Sri Lanka	1997	64	7	(11)	14	(22)	43	$(67)^{\dagger}$				
	Thailand	1997	15,122	5,212	$(34)^{5}$			4,877	(32)	3,422	(23)	1,611	(11)
Outbreaks	Bhutan	1998	60	2	(3)	13	(22)	31	(52)	11	(18)	3	(5)
	Maldives	1995	3,070	0		215	(7)	215	(7)	1,781	(58)	859	(28)
	Myanmar	1998	319	15	(5)	208	(65)	56	(17)	18	(6)	22	(7)

* Aged 5-14 years.
${ }^{\dagger}$ Aged ≥ 5 years.
${ }^{\S}$ Aged <5 years.
Group 1 countries (Bangladesh, DPR Korea, India, Myanmar, and Nepal) have limited measles control, and polio is endemic or recently was endemic. These countries should focus on reducing measles mortality by increasing routine vaccination coverage to $>90 \%$, improving case management, and conducting supplemental vaccination as an extraordinary activity in areas that have been unreachable by routine vaccination services. Planning and implementing supplemental measles vaccination should not divert resources from polio eradication activities. Health-care providers should be trained in management of measles cases and its complications. In addition, vitamin A supplementation, an important component of measles treatment and prevention, should be given at every measles vaccination contact. Measles surveillance should be

Measles Control - Continued

improved by complete and timely data reporting, including number of cases, age distribution, vaccination status, and location.

Countries in Group 2 (Bhutan, Indonesia, Maldives, Sri Lanka, and Thailand) are in more advanced stages of measles control and have been free from polio for >2 years. In these countries, measles outbreak prevention through enhanced surveillance, sustained high routine coverage ($>90 \%$), and targeted supplemental vaccination should be emphasized. Epidemiologic investigation of all measles cases should be a priority, with laboratory confirmation whenever possible. The capacity for laboratory diagnosis is available in Indonesia, Sri Lanka, and Thailand. Measles surveillance should be linked with acute flaccid paralysis (AFP) surveillance by using the same field staff and reporting systems when AFP surveillance has reached accepted standards ${ }^{\text {I }}$ and no polio cases are being reported. This type of surveillance has been initiated in Indonesia, Myanmar, and Sri Lanka. Vaccination coverage data should be analyzed continually to detect an impending outbreak when nationwide supplemental vaccination campaigns may be required to reduce the pool of susceptible children.
Reported by: Regional Office for South-East Asia, New Delhi, India; Dept of Vaccines and Other Biologicals, World Health Organization, Geneva, Switzerland. United Nations Children's Fund Regional Office for South Asia, Kathmandu, Nepal. Vaccine Preventable Disease Eradication Div, National Immunization Program; and an EIS Officer, CDC.
Editorial Note: Despite routine coverage of $>80 \%$ since 1990 in SEAR, measles is a major cause of morbidity and death among children aged <5 years (1). Basing calculations on the reported vaccination coverage and a vaccine efficacy of 85%, approximately 9 million (25%) children in SEAR are not protected through vaccination against measles at their first birthday.

Reported routine vaccination coverage rates in SEAR vary widely from year to year and, when compared with coverage survey results, usually overestimate the true coverage rate. For example, in Bangladesh in 1997, a nationwide survey conducted by the Ministry of Health among children aged 12-23 months documented measles coverage at 70% (3) whereas the coverage reported to WHO was 97% for the same year. In Indonesia in 1997, a nationwide survey conducted by the Ministry of Health estimated measles vaccination coverage among children aged 12-23 months at 71\% compared with the reported coverage of 92% (4). In Nepal in 1998, a nationwide survey conducted by the Ministry of Health estimated measles vaccination coverage among children aged 12-23 months at 73% compared with reported coverage in 1997 of 88% (5). In DPR Korea in 1998, a nationwide survey conducted by UNICEF among children aged 12-23 months found measles vaccination coverage to be 34\% compared with reported coverage of 100\% in 1996 (6).

Achieving $>90 \%$ coverage through routine vaccination is a cornerstone of measles control in SEAR. Strategies for improving routine coverage include identifying populations without access to routine services, raising community awareness of the need for vaccination, reducing missed opportunities to vaccinate children whenever contact occurs within the health-care system, linking curative and preventive services, and providing outreach services. Assessing and mapping vaccination coverage at the district and subdistrict levels are needed to monitor program performance and to identify areas requiring additional resources. Measles surveillance needs to be strengthened because it is critical for documenting the changing epidemiology of measles and for evaluating the impact of vaccination activities in the region.

[^1]
Measles Control - Continued

Polio remains endemic in at least four of the 10 SEAR countries (7), and achieving polio eradication by the end of 2000 remains the top vaccine-preventable disease priority (8). Careful phasing in of measles control is needed on both regional and national levels. Linking measles surveillance with AFP surveillance is a key strategy for accelerating measles control in countries with effective polio eradication programs. SEAR is in the early stages of coordinated efforts to control measles, and a sustained commitment with long-term national action plans is required to further reduce measles in the region.

References

1. CDC. Progress toward global measles control and regional elimination, 1990-1998. MMWR 1998;47:1049-54.
2. World Health Organization Regional Office for South East Asia. New Delhi, India. Thailand: Country Report, Ministry of Health, Thailand. Fifth Meeting of the South-East Asia Region Technical Consultative Group, Bangkok, 1998.
3. Bangladesh: National Institute of Population Research and Training, Ministry of Health and Family Welfare. Mitra and Associates Demographic and Health Surveys, December 1997.
4. Indonesia: Central Bureau of Statistics, State Ministry of Population, National Family Planning Co-ordinating Board, Ministry of Health, Demographic and Health Survey Macro International Demographic and Health Survey, 1997.
5. Nepal: Family Health Division, Department of Health Services, Ministry of Health. Routine Immunisation and NID Coverage Survey Report, 1998.
6. DPR Korea: UNICEF Country Office, Democratic People's Republic of Korea. Multiple Indicator Cluster Sample Survey, 1998.
7. CDC. Progress toward poliomyelites eradication—South-East Asia Region, 1997-1998. MMWR 1999;48:230-2,239.
8. Andrus JK, Banerjee K, Hull BP, Smith JC, Mochny I. Polio eradication in the World Health Organization South-East Asia Region by the year 2000: midway assessment of progress and future challenges. J Infect Dis 1997;175:S89-S96.

Outbreak of Influenza A Infection Among Travelers Alaska and the Yukon Territory, May-June 1999

On June 18, 1999, CDC and Health Canada received reports from public health authorities in Alaska and the Yukon Territory about clusters of febrile respiratory illness and associated pneumonia among travelers and tourism workers. This report presents information about the outbreak. Laboratory evidence, including rapid influenza A antigen-detection tests and viral cultures from respiratory specimens, has implicated influenza A virus as the cause of illness.

As of June 29, CDC has received reports of 428 cases of acute respiratory infection (ARI) among tourists who traveled to Alaska and the Yukon Territory from May 22 through June 28 on seven separate week-long cruises. For 187 (48%) of the 386 ill persons whose dates of illness onset were known, illness occurred before or within 48 hours after boarding a cruise ship, suggesting that transmission occurred during a preceding land-based tour. The ARI incidence for the 386 cases was 3.8% among 10,110 passengers for a 7-day travel itinerary; the ARI attack rate was 5.5 per 1000 passenger-days. One hundred thirty-two (34\%) cases met criteria for influenza-like illness (ILI) (i.e., fever or feverishness with cough or sore throat); four persons were

Influenza A Infection - Continued

hospitalized for pneumonia. No deaths have been reported. Among tourism workers, 104 cases of ARI have been reported.
Reported by: Div of Public Health, Section of Epidemiology, and Section of Laboratories, Alaska Dept of Health and Social Svcs. Travel Medicine, Laboratory Center for Disease Control, Health Canada. Arctic Investigations Program, Influenza Br, Div of Viral and Rickettsial Diseases, and Surveillance and Epidemiology Br, Div of Quarantine, National Center for Infectious Diseases, CDC.
Editorial Note: Summer outbreaks of influenza A have been reported previously among tourists in the United States and Canada (1-3). In 1998, approximately 40,000 tourists and tourism workers were affected by an influenza outbreak in Alaska and the Yukon Territory (4). As with the 1998 summer outbreak of influenza A in this region, the findings in this report suggest that influenza appears to be initially transmitted during land-based travel among tourists on combination land and sea tours and among tourism workers.

In anticipation of possible persistent influenza activity, some cruise lines initiated policies to vaccinate crew members during the fall of 1998 to decrease the risk for influenza transmission by crew members to travelers. In addition, health departments in Alaska, the Yukon Territory, and British Columbia and collaborating cruise lines have implemented summertime respiratory illness surveillance.

In response to this outbreak, CDC and Health Canada developed recommendations for travelers to the region and for regional tourism workers. These recommendations are based on the following assumptions and considerations: 1) persons who travel with large organized groups are at risk for exposure to influenza, 2) new cases of influenza A infection probably will continue to occur among tourists to the region,3) persons aged ≥ 65 years and persons with underlying health conditions are at increased risk for influenza-related complications, 4) tourism workers have frequent contact with persons at risk for influenza-related complications, 5) influenza vaccine availability during the summer is limited, and 6) when the supply of influenza vaccine is inadequate, influenza A-specific antiviral medications (i.e., amantadine or rimantadine) have a primary role in influenza A prevention and treatment.

On the basis of these considerations, CDC and Health Canada recommend that persons aged ≥ 65 years or who have certain underlying chronic medical conditions (e.g., pulmonary or cardiac disease) should consult their health-care providers before traveling to Alaska and the Yukon Territory this summer, regardless of their vaccination status, about their risk for influenza, the symptoms of influenza, and the advisability of carrying antiviral medications for either prophylaxis or treatment for influenza A infections. These groups are at increased risk for serious complications from influenza, including pneumonia, hospitalization, and death (5). Both amantadine and rimantadine can reduce the duration of influenza A illness and viral shedding if administered within 48 hours of symptom onset; however, these drugs also may cause side effects (particularly central nervous system or gastrointestinal effects) and may require dosage adjustment in elderly patients and those with underlying renal or hepatic disease. Health-care providers in Alaska, the Yukon Territory, and British Columbia and on cruise ships in regional waters who may be providing care for persons with ILI should consider prescribing antiviral agents for patients with febrile respiratory illness. Rapid antigen-detection tests for influenza, if available, will be useful for early diagnosis. CDC, in collaboration with state and provincial health authorities and the tourism

FIGURE I. Selected notifiable disease reports, comparison of provisional 4-week totals ending June 26, 1999, with historical data - United States

*Ratio of current 4-week total to mean of 154 -week totals (from previous, comparable, and subsequent 4 -week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

TABLE I. Summary - provisional cases of selected notifiable diseases, United States, cumulative, week ending June 26, 1999 (25th Week)

	Cum. 1999		Cum. 1999
Anthrax	-	HIV infection, pediatric*§	73
Brucellosis*	16	Plague	1
Cholera	2	Poliomyelitis, paralytic	-
Congenital rubella syndrome	3	Psittacosis*	14
Cyclosporiasis*	11	Rabies, human	-
Diphtheria	-	Rocky Mountain spotted fever (RMSF)	124
Encephalitis: California*	2	Streptococcal disease, invasive Group A	1,109
eastern equine*	2	Streptococcal toxic-shock syndrome*	22
St. Louis*	-	Syphilis, congenital ${ }^{\text {I }}$	75
western equine*	1	Tetanus	9
Ehrlichiosis human granulocytic (HGE)*	40	Toxic-shock syndrome	60
human monocytic (HME)*	5	Trichinosis	5
Hansen Disease* ${ }^{*}$	40	Typhoid fever	133
	7	Yellow fever	-
Hemolytic uremic syndrome, post-diarrheal*	21		

[^2]TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending June 26, 1999, and June 27, 1998 (25th Week)

Reporting Area	AIDS		Chlamydia		Cryptosporidiosis		$\begin{gathered} \text { Escherichia } \\ \text { coli } 0157: \mathrm{H}^{*} \end{gathered}$					
			NETSS	PHLIS								
	$\begin{aligned} & \hline \text { Cum. } \\ & 1999^{\dagger} \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \\ & \hline \end{aligned}$			$\begin{gathered} \hline \text { Cum. } \\ 1999 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1999 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1999 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$
UNITED STATES	18,649	23,112	267,541	277,696			641	924	674	729	361	619
NEW ENGLAND	953	809	9,186	9,828	32	69	95	106	76	96		
Maine	22	18	193	451	10	18	6	8	-	-		
N.H.	24	15	451	467	5	3	12	18	8	18		
Vt.	6	10	235	187	6	9	9	4	2	4		
Mass.	627	372	4,354	4,036	11	35	41	57	39	54		
R.I.	60	69	1,128	1,199	-	4	6	3	6	1		
Conn.	214	325	2,825	3,488	-	-	21	16	21	19		
MID. ATLANTIC	4,463	6,644	33,812	29,049	95	281	42	77	11	24		
Upstate N.Y.	531	853	N	N	54	175	36	48	-	-		
N.Y. City	2,110	3,669	17,606	12,842	22	96	-	7	3	6		
N.J.	967	1,163	4,757	5,594	9	10	6	22	8	15		
Pa .	855	959	11,449	10,613	10	-	N	N	-	3		
E.N. CENTRAL	1,289	1,744	39,936	47,151	57	99	120	156	60	125		
Ohio	209	338	11,228	12,894	18	37	51	32	8	21		
Ind.	169	323	4,974	5,145	9	20	17	48	13	25		
III.	594	693	13,376	12,449	11	27	28	47	12	29		
Mich.	252	305	10,358	10,232	19	15	24	29	14	24		
Wis.	65	85	U	6,431	-	-	N	N	13	26		
W.N. CENTRAL	389	429	14,322	16,357	46	97	125	81	57	78		
Minn.	69	63	3,186	3,326	14	29	37	27	33	33		
Iowa	44	48	1,225	2,067	9	18	15	19	6	15		
Mo.	154	210	5,099	5,728	6	8	14	12	13	20		
N. Dak.	4	4	325	482	4	14	3	1	-	5		
S. Dak.	11	9	773	776	3	14	5	2	4	3		
Nebr.	34	34	1,245	1,399	9	13	42	11	-	-		
Kans.	73	61	2,469	2,579	1	1	9	9	1	2		
S. ATLANTIC	5,239	5,546	63,703	53,232	152	86	91	40	46	55		
Del.	5,239	, 75	1,346	1,210	15	8	2	-	46	1		
Md.	560	716	4,729	4,003	6	8	6	12	-	7		
D.C.	208	416	826	N	5	3	-	-	-	-		
Va .	266	424	6,963	5,248	7	1	26	-	17	22		
W. Va.	26	50	977	1,135	-	1	4	3	1	2		
N.C.	356	387	11,067	10,799	4	-	21	11	16	13		
S.C.	485	352	8,635	9,004	-	-	11	1	3	1		
Ga.	826	615	15,198	11,689	81	26	6	8	-	-		
Fla.	2,440	2,511	13,962	9,996	49	47	15	5	9	9		
E.S. CENTRAL	844	901	18,744	18,940	8	15	51	46	19	33		
Ky.	128	126	3,333	2,983	2	5	14	13	-	-		
Tenn.	339	299	6,696	6,222	4	6	23	20	12	21		
Ala.	214	274	4,807	4,805	1	-	11	10	6	11		
Miss.	163	202	3,908	4,930	1	4	3	3	1	1		
W.S. CENTRAL	2,091	2,890	33,392	41,604	32	15	20	25	11	43		
Ark.	70	104	2,860	1,728	-	3	5	3	3	4		
La.	410	507	7,726	6,429	21	6	3	-	3	2		
Okla.	54	170	3,702	4,767	2	3	7	5	5	4		
Tex.	1,557	2,109	19,104	28,680	9	3	5	17	-	33		
MOUNTAIN	723	815	15,433	15,305	37	63	49	76	27	57		
Mont.	4	15	654	595	7	4	3	4		2		
Idaho	11	15	617	914	2	14	1	8	2	2		
Wyo.	3	1	333	301	-		3	2	4	4		
Colo.	144	146	3,614	3,943	4	2	20	19	12	15		
N. Mex.	37	129	1,731	1,830	15	26	3	9	1	6		
Ariz.	355	327	6,116	5,140	7	10	8	13	4	11		
Utah	70	65	908	1,071	-	1	9	15	2	10		
Nev.	99	117	1,460	1,511	2	6	2	6	2	7		
PACIFIC	2,658	3,334	39,013	46,230	182	199	81	122	54	108		
Wash.	153	230	5,624	5,284	-	-	27	25	26	35		
Oreg.	63	94	2,802	2,447	73	21	20	29	14	28		
Calif.	2,394	2,931	28,716	36,455	109	177	34	66	13	41		
Alaska	6	12	873	931	-	-	-	2	-	-		
Hawaii	42	67	998	1,113	-	1	-	-	1	4		
Guam	1	-	149	174	-	-	N	N	-	-		
P.R.	625	921	U	U	-	-	6	4	U	U		
V.I.	13	17	N	N	-	-	N	N	U	U		
Amer. Samoa	-	-	U	U	-	-	N	N	U	U		
C.N.M.I.	-	-	N	N	-	-	N	N	U	U		

N : Not notifiable
U: Unavailable
$-:$ no reported cases
C.N.M.I.: Commonwealth of Northern Mariana Islands
*Individual cases may be reported through both the National Electronic Telecommunications System for Surveillance (NETSS) and the
Public Health Laboratory Information System (PHLIS).
${ }^{\dagger}$ Updated monthly from reports to the Division of HIV/AIDS Prevention-Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention, last update May 23, 1999.

TABLE II. (Cont'd.) Provisional cases of selected notifiable diseases, United States, weeks ending June 26, 1999, and June 27, 1998 (25th Week)

Reporting Area	Gonorrhea		Hepatitis C/NA,NB		Legionellosis		Lyme Disease	
	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1998 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1998 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$
UNITED STATES	144,657	159,283	1,770	1,902	446	525	2,475	3,114
NEW ENGLAND	2,746	2,733	55	42	29	28	457	952
Maine	15	27	1	-	4	1	-	16
N.H.	35	45	-	-	3	3	-	13
V t.	26	13	2	2	4	1	-	4
Mass.	1,218	966	49	39	9	13	242	221
R.I.	289	175	3	1	3	4	77	30
Conn.	1,163	1,507	-	-	6	6	138	668
MID. ATLANTIC	18,708	17,272	79	113	93	118	1,519	1,641
Upstate N.Y.	2,893	3,217	50	55	26	30	714	750
N.Y. City	7,494	5,774			7	25	6	65
N.J.	2,774	3,409	-	-	5	5	124	277
Pa .	5,547	4,872	29	58	55	58	675	549
E.N. CENTRAL	26,216	31,165	961	273	125	180	48	165
Ohio	6,668	7,847	-	6	41	63	26	16
Ind.	2,897	2,986	1	4	39	31	19	8
III.	9,481	10,134	10	26	10	22	2	5
Mich.	7,170	7,480	368	237	32	32	1	8
Wis.	U	2,718	582	-	3	32	U	128
W.N. CENTRAL	5,783	7,779	65	18	22	30	38	29
Minn.	1,182	1,176	2	5	1	3	13	9
Iowa	306	661	-	5	11	5	10	10
Mo.	2,625	4,167	56	6	7	8	-	6
N. Dak.	31	43	-	-	-	-	1	-
S. Dak.	75	123	-	-	1	1	-	-
Nebr.	552	531	3	2	2	11	6	2
Kans.	1,012	1,078	4	-	-	2	8	2
S. ATLANTIC	46,175	42,726	116	54	51	62	278	245
Del.	799	649	-	5	4	7	9	15
Md.	4,135	4,584	28	5	6	14	190	180
D.C.	2,490	1,855	-	-	-	4	1	4
Va .	4,498	2,882	10	5	13	7	18	20
W. Va.	268	385	12	4	N	N	7	5
N.C.	9,396	9,037	24	12	8	6	32	12
S.C.	4,645	5,823	12	2	7	5	4	2
Ga .	10,003	9,516	1	9	-	2	-	2
Fla.	9,941	7,995	29	17	13	16	17	5
E.S. CENTRAL	14,633	17,867	119	78	55	28	44	28
Ky.	1,494	1,702	8	15	44	14	19	9
Tenn.	5,203	5,282	43	60	9	7	13	10
Ala.	4,293	6,139	1	3	2	3	6	9
Miss.	3,643	4,744	67	-	-	4	6	-
W.S. CENTRAL	18,803	24,725	126	273	1	10	3	8
Ark.	1,402	1,907	3	10	-	1	1	5
La.	6,054	5,274	100	10	1	1	-	-
Okla.	1,878	2,584	4	2	-	6	2	-
Tex.	9,469	14,960	19	251	-	2	-	3
MOUNTAIN	4,295	4,028	72	247	27	30	6	3
Mont.	21	23	4	4	-	1	-	-
Idaho	32	83	4	85	-	-	1	1
Wyo.	11	15	24	58	-	1	1	1
Colo.	1,031	984	14	12	5	5	-	-
N. Mex.	311	355	4	51	1	2	1	-
Ariz.	2,219	1,869	17	4	4	3	-	-
Utah	86	109	2	17	11	15	1	-
Nev.	584	590	3	16	6	3	2	1
PACIFIC	7,298	10,988	177	804	43	39	82	43
Wash.	990	899	8	10	9	4	2	1
Oreg.	400	330	7	10	N	N	3	8
Calif.	5,633	9,376	162	729	33	34	77	34
Alaska	147	156	-	1	1	-	-	-
Hawaii	128	227	-	54	-	1	-	-
Guam	22	24	-	-	-	2	-	-
P.R.	145	196	-	-	-	-	-	-
V.I.	U	U	U	U	U	U	U	U
Amer. Samoa	U	U	U	U	U	U	U	U
C.N.M.I.	-	18		-	-	-	-	-

N : Not notifiable
U: Unavailable
-: no reported cases

TABLE II. (Cont'd.) Provisional cases of selected notifiable diseases, United States, weeks ending June 26, 1999, and June 27, 1998 (25th Week)

Reporting Area	Malaria		Rabies, Animal		Salmonellosis*					
			NETSS	PHLIS						
	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$			$\begin{aligned} & \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1998 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1998 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$
UNITED STATES	510	566	2,539	3,586	12,444	14,387	9,355	13,378		
NEW ENGLAND	20	22	390	667	772	949	703	881		
Maine	2	3	73	122	57	69	35	27		
N.H.	-	3	26	33	41	66	39	93		
Vt.	1	-	59	30	31	39	26	33		
Mass.	7	14	84	215	443	517	407	503		
R.I.	2	2	49	35	49	53	48	37		
Conn.	8	-	99	232	151	205	148	188		
MID. ATLANTIC	121	165	475	746	1,629	2,471	1,103	2,363		
Upstate N.Y.	36	33	307	511	449	559	454	485		
N.Y. City	38	96	U	U	377	808	368	752		
N.J.	29	21	99	95	332	514	281	435		
Pa.	18	15	69	140	471	590	-	691		
E.N. CENTRAL	54	56	39	52	1,585	2,547	1,199	1,743		
Ohio	9	3	11	36	396	575	117	483		
Ind.	8	2	-	4	178	295	127	266		
III.	18	24	${ }^{-}$	4	558	754	399	383		
Mich.	17	24	25	6	415	510	380	379		
Wis.	2	3	3	2	38	413	176	232		
W.N. CENTRAL	21	32	303	383	808	883	729	987		
Minn.	5	13	52	62	219	224	248	277		
Iowa	6	3	65	79	90	154	60	133		
Mo.	9	10	9	20	252	240	321	349		
N. Dak.	-	2	84	73	15	28	2	43		
S. Dak.	-	-	44	89	44	36	26	48		
Nebr.	-	1	2	3	91	74	-	20		
Kans.	1	3	47	57	97	127	72	117		
S. ATLANTIC	145	119	973	1,207	2,782	2,430	2,007	1,988		
Del.	1	1	29	20	43	29	51	45		
Md.	45	43	200	253	318	342	296	371		
D.C.	10	7	-	-	39	43	-	-		
Va.	26	21	249	330	488	391	371	369		
W. Va.	1	-	57	41	43	65	37	63		
N.C.	10	10	191	315	434	356	414	411		
S.C.	1	4	78	72	155	167	134	132		
Ga.	12	15	84	82	425	351	543	403		
Fla.	39	18	85	94	837	686	161	194		
E.S. CENTRAL	10	16	132	142	659	677	263	596		
Kу.	2	2	22	18	161	161	-	89		
Tenn.	5	8	46	82	180	198	139	317		
Ala.	2	4	64	40	194	175	107	155		
Miss.	1	2	-	2	124	143	17	35		
W.S. CENTRAL	8	11	50	102	845	1,127	653	1,479		
Ark.	-	1	-	19	145	117	76	89		
La.	6	4	${ }^{-}$	-	159	201	66	278		
Okla.	1	1	50	83	132	136	88	58		
Tex.	1	5	-	-	409	673	423	1,054		
MOUNTAIN	23	29	90	94	1,213	876	802	839		
Mont.	3	-	35	29	27	39	1	19		
Idaho	1	3	-	-	40	50	35	39		
Wyo.	1	-	27	40	11	31	17	27		
Colo.	8	7	1	2	363	221	367	220		
N. Mex.	2	9	2	1	138	79	79	77		
Ariz.	5	4	25	20	353	241	250	258		
Utah	2	1	-	2	203	140	-	120		
Nev.	1	5	-	-	78	75	53	79		
PACIFIC	108	116	87	193	2,151	2,427	1,896	2,502		
Wash.	7	9	-	-	206	177	279	299		
Oreg.	13	10	1	-	158	135	205	176		
Calif.	82	95	80	173	1,601	2,003	1,291	1,907		
Alaska		-	6	20	18	18	6	14		
Hawaii	6	2	-	-	168	94	115	106		
Guam	-	1	-	-	18	11	-	-		
P.R.	-	-	36	27	184	294	-	-		
V.I.	U	U	U	U	-	-	-	-		
Amer. Samoa	U	U	U	U	-	-	-	-		
C.N.M.I.	-	-	-	-	-	11	-	-		

N : Not notifiable U: Unavailable
-: no reported cases
*Individual cases may be reported through both the National Electronic Telecommunications System for Surveillance (NETSS) and the Public Health Laboratory Information System (PHLIS).

TABLE II. (Cont'd.) Provisional cases of selected notifiable diseases, United States, weeks ending June 26, 1999, and June 27, 1998 (25th Week)

Reporting Area	Shigellosis*				Syphilis (Primary \& Secondary)		Tuberculosis	
	NETSS		PHLIS					
	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1998 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1999^{\dagger} \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & \text { 1998 } \end{aligned}$
UNITED STATES	5,544	8,254	2,007	5,067	2,969	3,333	3,863	4,602
NEW ENGLAND	147	206	126	182	29	37	170	213
Maine	2	7	-	-	-	1	9	5
N.H.	7	7	6	8	-	1	3	2
Vt.	4	4	3	-	2	3	-	1
Mass.	93	127	82	122	18	23	92	116
R.I.	14	15	9	12	1	-	19	25
Conn.	27	46	26	40	8	9	47	64
MID. ATLANTIC	375	1,257	185	1,076	123	112	960	1,054
Upstate N.Y.	107	235	31	76	15	17	135	136
N.Y. City	98	411	81	451	57	23	609	632
N.J.	103	390	73	380	16	54	216	286
Pa .	67	221	-	169	35	18	U	U
E.N. CENTRAL	827	1,215	334	625	583	499	414	587
Ohio	256	282	14	67	47	75	U	U
Ind.	53	79	11	22	173	88	U	U
III.	312	630	218	515	268	209	252	372
Mich.	158	122	73	4	95	89	123	164
Wis.	48	102	18	17	U	38	39	51
W.N. CENTRAL	491	433	311	188	52	75	230	189
Minn.	76	78	83	79	5	5	89	63
lowa	7	31	9	27	5	-	26	2
Mo.	350	51	201	37	34	57	82	80
N. Dak.	2	4	-	2	-	-	2	3
S. Dak.	8	20	4	18	-	1	3	13
Nebr.	28	234	-	15	4	4	9	5
Kans.	20	15	14	10	4	8	19	23
S. ATLANTIC	1,077	1,556	239	508	982	1,283	759	772
Del.	7	8	2	2	4	15	12	17
Md.	59	94	15	30	191	362	U	U
D.C.	30	11	-	-	42	48	24	55
Va .	38	67	10	25	75	85	104	144
W. Va.	5	7	2	5	2	2	22	24
N.C.	113	134	54	80	241	356	202	199
S.C.	51	78	18	30	125	155	124	138
Ga.	101	419	34	126	154	138	271	195
Fla.	673	738	104	210	148	122	U	U
E.S. CENTRAL	595	411	217	239	550	579	281	389
Kу.	113	77	-	38	46	59	82	95
Tenn.	392	67	197	86	315	281	U	U
Ala.	51	238	19	113	129	133	143	184
Miss.	39	29	1	2	60	106	56	110
W.S. CENTRAL	763	1,646	339	1,814	415	444	747	998
Ark.	46	77	21	16	34	58	78	53
La.	76	129	29	155	121	150	U	U
Okla.	236	116	77	30	103	24	60	57
Tex.	405	1,324	212	1,613	157	212	609	888
MOUNTAIN	327	508	152	297	99	116	62	109
Mont.	6	3	-	3	-	-	5	12
Idaho	6	11	3	7	1	-	-	4
Wyo.	2	1	1	-	-	1	1	2
Colo.	50	63	37	47	1	7	U	U
N. Mex.	40	119	13	49	-	12	23	30
Ariz.	176	276	92	171	90	84	U	U
Utah	26	16		13	2	3	18	32
Nev .	21	19	6	7	5	9	15	29
PACIFIC	942	1,022	104	138	136	188	240	291
Wash.	50	56	51	58	35	12	76	121
Oreg.	34	62	34	57	2	1	56	57
Calif.	836	883	-	-	96	175	U	U
Alaska	-	3	-	2	1	-	29	26
Hawaii	22	18	19	21	2	-	79	87
Guam	3	20	-	-	-	-	-	38
P.R.	23	28	-	-	82	110	41	65
V.I.		-	-	-	U	U	U	U
Amer. Samoa	-	-	-	-	U	U	U	U
C.N.M.I.	-	11	-	-	-	131	-	57

N : Not notifiable
U: Unavailable
$-:$ no reported cases
*Individual cases may be reported through both the National Electronic Telecommunications System for Surveillance (NETSS) and the Public Health Laboratory Information System (PHLIS).
${ }^{\dagger}$ Cumulative reports of provisional tuberculosis cases for 1998 and 1999 are unavailable (" U ") for some areas using the Tuberculosis Information System (TIMS)

TABLE III. Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending June 26, 1999, and June 27, 1998 (25th Week)

Reporting Area	H. influenzae, invasive		Hepatitis (Viral), by type				Measles (Rubeola)					
			A		B		Indigenous		Imported*		Total	
	$\begin{aligned} & \hline \text { Cum. } \\ & 1999^{\dagger} \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1998 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$	1999	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \end{aligned}$	1999	$\begin{gathered} \hline \text { Cum. } \\ 1999 \end{gathered}$	$\begin{gathered} \hline \text { Cum. } \\ 1999 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \end{aligned}$
UNITED STATES	596	587	7,445	10,953	3,075	4,314	1	28	-	13	41	40
NEW ENGLAND	41	41	90	146	51	87	-	5	-	4	9	2
Maine	5	2	4	13	-	2	-	-	-	-	-	-
N.H.	8	6	7	7	8	10	-	-	-	1	1	-
V t.	4	2	3	11	1	3	-	-	-	-	-	-
Mass.	17	29	29	48	26	34	-	4	-	2	6	2
R.I.	-	2	9	9	16	20	-	-	-	-	-	-
Conn.	7	-	38	58	-	18	U	1	U	1	2	-
MID. ATLANTIC	83	87	500	825	383	619	-	-	-	2	2	11
Upstate N.Y.	47	27	121	155	98	116	-	-	-	2	2	2
N.Y. City	13	27	82	305	89	212	-	-	-	-	-	-
N.J.	23	28	57	157	40	106	U	-	U	-	-	8
Pa .	-	5	240	208	156	185	-	-	-	-	-	1
E.N. CENTRAL	83	94	1,494	1,499	292	474	-	1	-	-	1	15
Ohio	35	34	366	172	45	35	-	-	-	-	-	1
Ind.	14	22	96	89	27	52	-	1	-	-	1	3
III.	27	34	220	370	-	127	-	-	-	-	-	-
Mich.	7	-	786	750	219	214	-	-	-	-	-	10
Wis.	-	4	26	118	1	46	U	-	U	-	-	1
W.N. CENTRAL	48	39	362	841	240	203	-	-	-	-	-	-
Minn.	13	25	33	60	19	16	-	-	-	-	-	-
Iowa	13	1	76	353	103	33	-	-	-	-	-	-
Mo.	16	8	190	350	92	125	-	-	-	-	-	-
N. Dak.	-	-	1	3	-	4	-	-	-	-	-	-
S. Dak.	1	-	8	8	1	1	-	-	-	-	-	-
Nebr.	3	-	30	14	10	9	-	-	-	-	-	-
Kans.	2	5	24	53	15	15	-	-	-	-	-	-
S. ATLANTIC	139	110	926	830	554	449	-	1	-	3	4	6
Del.	-	-	2	3	-	-	-	-	-	-	-	1
Md.	32	36	155	170	78	86	-	-	-	-	-	1
D.C.	4	-	32	30	11	6	-	-	-	-	-	-
Va .	12	12	76	126	49	53	-	1	-	2	3	2
W. Va.	4	4	15	1	11	3	-	-	-	-	-	-
N.C.	21	15	64	49	117	103	-	-	-	-	-	-
S.C.	2	3	18	17	38	8	-	-	-	-	-	-
Ga .	35	22	251	235	65	84	-	-	-	-	-	1
Fla.	29	18	313	199	185	106	-	-	-	1	1	1
E.S. CENTRAL	46	36	233	217	225	201	-	-	-	-	-	1
Ky.	6	5	37	14	25	23	-	-	-	-	-	-
Tenn.	25	22	121	122	108	138	-	-	-	-	-	-
Ala.	13	7	36	44	47	40	-	-	-	-	-	1
Miss.	2	2	39	37	45	-	U	-	U	-	-	-
W.S. CENTRAL	33	30	1,306	1,950	291	980	-	1	-	2	3	-
Ark.	1	-	26	39	25	47	-	-	-	-	-	-
La.	7	13	59	41	72	47	U	-	U	-	-	-
Okla.	23	15	250	280	60	31	-	-	-	-	-	-
Tex.	2	2	971	1,590	134	855	-	1	-	2	3	-
MOUNTAIN	60	77	726	1,652	312	416	1	2	-	-	2	-
Mont.	1	-	12	51	15	3	-	-	-	-	-	-
Idaho	1	-	27	134	16	17	-	-	-	-	-	-
Wyo.	1	-	4	23	5	2	U	-	U	-	-	-
Colo.	9	14	126	125	43	52	-	-	-	-	-	-
N. Mex.	13	4	28	83	108	154	-	-	-	-	-	-
Ariz.	29	39	442	1,008	80	102	-	1	-	-	1	-
Utah	4	3	25	113	17	38	1	1	-	-	1	-
Nev.	2	17	62	115	28	48	-	-	-	-	-	-
PACIFIC	63	73	1,808	2,993	727	885	-	18	-	2	20	5
Wash.	2	3	149	567	32	52	-	-	-	-	-	1
Oreg.	25	30	137	233	49	88	-	8	-	-	8	
Calif.	30	33	1,512	2,150	631	731	-	10	-	2	12	4
Alaska	4	1	3	14	9	7	U	-	U	-		-
Hawaii	2	6	7	29	6	7	-	-	-	-	-	-
Guam	-	-	2	-	2	2	U	1	U	-	1	-
P.R.	1	2	80	31	76	277	-	-	-	-	-	-
V.I.	U	U	U	U	U	U	U	U	U	U	U	U
Amer. Samoa	U	U	U	U	U	U	U	U	U	U	U	U
C.N.M.I.		U	U	1		34	U	U	U			

[^3]*For imported measles, cases include only those resulting from importation from other countries.
${ }^{\dagger}$ Of 123 cases among children aged <5 years, serotype was reported for 57 and of those, 13 were type b.

TABLE III. (Cont'd.) Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending June 26, 1999, and June 27, 1998 (25th Week)

Reporting Area	Meningococcal Disease		Mumps			Pertussis			Rubella		
	$\begin{gathered} \hline \text { Cum. } \\ 1999 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1998 \\ & \hline \end{aligned}$	1999	$\begin{gathered} \hline \text { Cum. } \\ 1999 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cum. } \\ 1998 \\ \hline \end{gathered}$	1999	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1998 \\ \hline \end{gathered}$	1999	$\begin{aligned} & \hline \text { Cum. } \\ & 1999 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1998 \\ \hline \end{gathered}$
UNITED STATES	1,301	1,548	2	175	398	50	2,462	2,343	3	135	287
NEW ENGLAND	70	69	-	3	1	6	252	432	-	6	36
Maine	4	4	-	-	-	-		5	-	-	-
N.H.	10	8	-	1	-	-	53	34	-	-	-
Vt.	4	1	-	-	-	-	9	38	-	-	-
Mass.	43	30	-	2	1	1	174	339	-	6	8
R.I.	2	3	-	-	-	5	8	3	-	-	
Conn.	7	23	U	-	-	U	8	13	U	-	28
MID. ATLANTIC	115	162	-	21	168	4	568	285	2	17	131
Upstate N.Y.	33	42	-	5	2	4	495	138	2	13	108
N.Y. City	27	19	-	3	153	-	10	14	-	-	10
N.J.	23	39	U	-	5	U	12	8	U	1	12
Pa.	32	62	-	13	8	-	51	125	,	3	1
E.N. CENTRAL	204	243	1	23	47	8	207	218	1	1	-
Ohio	91	82	-	7	19	2	107	71	-	-	-
Ind.	36	43	1	3	4	3	14	53	1	1	-
III.	50	68	-	6	7	3	38	24	-	-	-
Mich.	26	26	-	7	17		21	32	-	-	-
Wis.	1	24	U	-	-	U	27	38	U	-	-
W.N. CENTRAL	151	126	-	5	20	3	65	174	-	71	27
Minn.	30	19	-	1	10	-	25	100	-	-	-
lowa	28	18	-	3	6	1	20	43	-	21	
Mo.	59	52	-	1	3	-	15	13	-	2	2
N. Dak.	3		-	-	1	-	-		-	-	
S. Dak.	8	6	-	-	-	2	4	4	-	$\stackrel{-}{-}$	-
Nebr.	9	7	-	-	-	-	1	6	-	48	-
Kans.	14	24	-	-	-	-	-	8	-	-	25
S. ATLANTIC	223	241	1	36	25	6	142	122	-	17	6
Del.	3	1	-	-		-	-	1	-		
Md.	33	22	-	3	-	2	38	27	-	1	-
D.C.	1	-	-	2	-	-	-	1	-	-	-
Va .	26	23	-	8	4	-	13	6	-	-	-
W. Va.	4	9	-	8	-	-	1	1	-	-	-
N.C.	26	35	1	8	8	2	35	44	-	16	5
S.C.	27	39	-	3	4	-	9	15	-	-	-
Ga.	39	55	-	2	1	-	16	6	-	-	-
Fla.	64	57	-	10	8	2	30	21	-	-	1
E.S. CENTRAL	108	116	-	1	8	-	43	51	-	1	-
Ky.	29	16	-	,	-	-	3	18	-	-	-
Tenn.	38	41	-	-	1	-	25	17	-	-	-
Ala.	24	40	-	1	4	-	11	14	-	1	-
Miss.	17	19	U	-	3	U	4	2	U	-	-
W.S. CENTRAL	93	183	-	21	32	-	61	145	-	5	69
Ark.	20	22	-	-		-	6	15	-	-	
La.	34	35	U	3	2	U	3	1	U	-	-
Okla.	16	26	-	1	-	-	7	15	-	-	
Tex.	23	100	-	17	30	-	45	114	-	5	69
MOUNTAIN	88	84	-	12	23	3	245	481	-	14	5
Mont.	2	3	-	-	-		2	1	-	-	
Idaho	8	4	-	1	3	-	93	184	-	-	-
Wyo.	3	3	U	-	1	U	2	7	U	-	-
Colo.	23	17	-	3	3	-	60	115	-	-	1
N. Mex.	11	15	N	N	N	3	24	64	-	-	1
Ariz.	28	29	,	-	4		29	69	-	13	1
Utah	8	8	-	5	3	-	33	23	-		2
Nev.	5	5	-	3	9	-	2	18	-	1	1
PACIFIC	249	324	-	53	74	20	879	435	-	3	13
Wash.	37	41	-	2	5	20	499	139	-	-	9
Oreg.	42	54	N	N	N	-	17	29	-	3	-
Calif.	162	224	-	45	53	-	353	260	U	3	2
Alaska	4	1	U	1	2	U	3	2	U	-	-
Hawaii	4	4	-	5	14	-	7	5	-	-	2
Guam	5	2	U	1	2	U	1	,	U	-	-
P.R.	5	6	-	-	1	1	9	2	,	,	U
V.I.	U	U	U	U	U	U	U	U	U	U	U
Amer. Samoa	U	U	U	U	U	U	U	U	U	U	U
C.N.M.I.	-	-	U	-	2	U	-	1	U	-	-

TABLE IV. Deaths in 122 U.S. cities,* week ending June 26, 1999 (25th Week)

Reporting Area	All Causes, By Age (Years)						$\mathbf{P} \& \mathbf{I}^{\dagger}$Total	Reporting Area	All Causes, By Age (Years)						P\& ${ }^{\dagger}$ Total
	All Ages	>65	45-64	25-44	1-24	<1			All Ages	>65	45-64	25-44	1-24	<1	
NEW ENGLAND	531	380	81	44	14	12	27	S. ATLANTIC	1,069	714	198	97	38	21	50
Boston, Mass.	171	115	26	17	6	7	14	Atlanta, Ga.	U	U	U	U	U	U	U
Bridgeport, Conn.	26	18	4	3	1		-	Baltimore, Md.	239	145	49	32	10	3	19
Cambridge, Mass.	21	19	2				2	Charlotte, N.C.	90	52	18	13	2	5	7
Fall River, Mass.	20	15	2	3	5		-	Jacksonville, Fla.	141	96	26	12	4	3	2
Hartford, Conn.	60	35	11	8	5	1	1	Miami, Fla.	117	76	21	12	7	1	-
Lowell, Mass.	20	14	4	2	-		1	Norfolk, Va.	48	30	10	5	2	1	1
Lynn, Mass.	7	4	2	1	-		-	Richmond, Va.	56	36	11	4	1	3	1
New Bedford, Mass.	20	16	3	1	-		-	Savannah, Ga.	51	35	12		2	2	10
New Haven, Conn.	35	25	5	4	-	1	2	St. Petersburg, Fla.	65	55	5	4		1	4
Providence, R.I.	60	48	8	2	-	2	1	Tampa, Fla.	142	107	22	7	5	1	4
Somerville, Mass.	7	6	-	1	-			Washington, D.C.	99	64	21	8	5	1	2
Springfield, Mass.	19	16	2	1	-		2	Wilmington, Del.	21	18	3	-	-	-	-
Waterbury, Conn.	19	17	2	-	-	$\bar{\square}$	1								
Worcester, Mass.	46	32	10	1	2	1	3	E.S. CENTRAL Birmingham, Ala.	$\begin{aligned} & 795 \\ & 165 \end{aligned}$	521	161 32	$\begin{aligned} & 63 \\ & 14 \end{aligned}$	29 5	19	50
MID. ATLANTIC	2,113	1,434	420	155	54	49	71	Chattanooga, Tenn.	71	51	12	3	3	2	8
Albany, N.Y.	53	38	9	1	3	2	4	Knoxville, Tenn.	83	56	20	5	1	1	4
Allentown, Pa.	U	U	U	U	U	U	U	Lexington, Ky.	58	35	15	5	2	1	9
Buffalo, N.Y.	86	61	15	6	4	-	2	Memphis, Tenn.	175	112	34	15	8	6	14
Camden, N.J.	27	18	3	2	2	2	-	Mobile, Ala.	101	59	30	6	6	-	1
Elizabeth, N.J.	U	U	U	U	U	U	U	Montgomery, Ala.	19	16		3	-	-	5
Erie, Pa.	48	37	9	1	-	1	2	Nashville, Tenn.	123	84	18	12	4	5	2
Jersey City, N.J.	47	33	12	1	1										
New York City, N.Y.	1,120	755	227	91	24	22	24	W.S. CENTRAL Austin, Tex.	1,460 88	949 58	299	131 7	48	33	89 5
Newark, N.J.	U	U	U	U	U	U	U	Austin, Tex. Baton Rouge, La.	88 54	58 36	6	7	3 4	1	5 5
Paterson, N.J.	22	15	5	2				Baton Rouge, La. Corpus Christi, Tex.	54 64	48	14	1	1	1	5 1
Philadelphia, Pa.	300	174	69	35	11	11	13	Corpus Christi, Tex. Dallas, Tex.	179	104	14	24	8	7	1
Pittsburgh, Pa.§	92	56	23	3	4	6	7	Dallas, Tex.	179 58	104 43	36 6	24 4	3	2	6 4
Reading, Pa.	26	22	3	1		2	11	Ft. Worth, Tex.	138	92	24	17	1	2	r 4
Rochester, N.Y.	132	101	22	5	2	2	11	Ft. Worth, Tex.	1327	211	74	26	11	5	15
Schenectady, N.Y.	16	16				-	3	Houston, Tex. Little Rock, Ark.	67	41	12	26	11	2	25 2
Scranton, Pa. Syracuse, N.Y.	30 83	26	${ }^{2}$	2	1	$\overline{-}$	1	New Orleans, La.	70	41	15	10	2	2	7
Syracuse, N.Y. Trenton, N.J.	83 14	57	18	5	1	2	1	San Antonio, Tex.	229	145	54		8		12
Trenton, N.J.	14	10	1		2	1	1	San Antonio, Tex.	$\begin{array}{r}229 \\ 80 \\ \hline\end{array}$	145 57 73	54 18	17 3	8	5	12 6
Yonkers, N.Y.	U	U	U	U	U	U	U	Tulsa, Okla.	108	73	20	8	2	5	1
E.N. CENTRAL	2,042	1,366	409	154	52	60	102	MOUNTAIN	835	557	174	63	24	17	55
Akron, Ohio	35	27	6	-	2	-	1	Albuquerque, N.M.	106	66	25	8	7	-	2
Canton, Ohio	46	36	6	4	-	-	2	Boise, Idaho	32	20	9	2	-	1	1
Chicago, III.	427	255	103	44	14	10	26	Colo. Springs, Colo.	55	42	5	4	1	3	4
Cincinnati, Ohio	85	57	14	8	2	4	6	Denver, Colo.	91	55	19	8	7	2	5
Cleveland, Ohio	121	80	31	5	2	3	2	Las Vegas, Nev.	202	136	47	15	2	2	17
Columbus, Ohio	171	105	49	8	5	4	8	Ogden, Utah	25	19		3	1	1	6
Dayton, Ohio	117	89	20	5	1	2	8	Phoenix, Ariz.	62	40	9	9	2	2	4
Detroit, Mich.	203	106	47	24	11	15	6	Pueblo, Colo.	26	19	4			-	2
Evansville, Ind.	43	39	2	2			1	Salt Lake City, Utah	104	71	21	6	2	4	9
Fort Wayne, Ind.	72	55	10	5	2		2	Tucson, Ariz.	132	89	34	6	1	2	5
Gary, Ind.	20	5	5	8	2	$\overline{-}$		PACIFIC	1,615	1,130	292	110	38	45	134
Grand Rapids, Mich.	46	37	6	1		2	6	Berkeley, Calif.	1,611	, 8	2	110	3	1	134
Indianapolis, Ind.	211	148	36	14	3	10	7	Fresno, Calif.	98	75	16	2	4	1	9
Lansing, Mich.	45	33	10	1	1	-	4	Glendale, Calif.	27	21	4	2	-	-	2
Milwaukee, Wis.	100	63	23	8	3	3	6	Honolulu, Hawaii	67	52	10	1	2	2	2
Peoria, III.	62	47	8	4	1	3	6	Long Beach, Calif.	72	50	15	4	-	3	6
Rockford, III.	42	31	6	4	1	-	3	Los Angeles, Calif.	424	288	74	40	11	11	33
South Bend, Ind.	55	43	10	1	1	$\overline{-}$	2	Pasadena, Calif.	31	22	6	2	-	1	2
Toledo, Ohio	82	64	8	6	1	3	6	Portland, Oreg.	130	97	19	8	2	4	9
Youngstown, Ohio	59	46	9	2	1	1	-	Sacramento, Calif.	176	122	35	5	6	8	29
W.N. CENTRAL	521	358	105	33	13	12	27	San Diego, Calif.	135	88	30	10	2	5	9
Des Moines, lowa	75	54	13	3	3	2	8	San Francisco, Calif.	U	U	U	U	U	U	U
Duluth, Minn.	26	23	2	-		1	4	San Jose, Calif.	153	107	25	14	4	3	16
Kansas City, Kans.	U	U	U	U	U	U	U	Santa Cruz, Calif.	21	13	6	2	5	-	2
Kansas City, Mo.	93	57	22	9	3	,	3	Seattle, Wash.	122 64	76	22	15	5	4	3
Lincoln, Nebr.	27	21	4	1	1	-	2						2	2	
Minneapolis, Minn.	156	107	33	9	3	4	8	Tacoma, Wash.	84	60	19	3	2	-	6
Omaha, Nebr.	U	U	U	U	U	U	U	TOTAL	10,981 ${ }^{\text {T}}$	7,409	2,139	850	310	268	605
St. Louis, Mo.	84	49	22	8	3	2	-								
St. Paul, Minn.	60	47	9	3		1	2								
Wichita, Kans.	U	U	U	U	U	U	U								

U: Unavailable -: no reported cases
*Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
${ }_{\† Pneumonia and influenza.
§ Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
TTotal includes unknown ages.

Influenza A Infection - Continued

industry, is working to implement surveillance for ILI among travelers and tourism workers for the remainder of the Alaska/Yukon Territory tourist season.

In the United States and Canada, health-care providers evaluating patients with febrile respiratory illnesses or pneumonia should obtain a travel history and consider influenza A in their differential diagnosis. Additional information about this outbreak is available on the CDC World-Wide Web sites, http://www.cdc.gov/travel/index.htm and http://www.cdc.gov/ncidod/diseases/flu/fluvirus.htm.

References

1. CDC. Outbreak of influenza-like illness in a tour group—Alaska. MMWR 1987;36:697-8,704.
2. CDC. Update: outbreak of influenza A infection-Alaska and the Yukon Territory, JulyAugust 1998. MMWR 1998;47:685-8.
3. Health Canada. Influenza A outbreak on a cruiseship. Can Comm Dis Rep 1998;24:9-11.
4. Zane S, Uyeki T, Bodnar U, et al. Influenza in travelers, tourism workers, and residents in Alaska and the Yukon Territory, summer 1998 [Poster]. Presented at the 6th Conference of the International Society for Travel Medicine, Montreal, Canada, June 6-10, 1999.
5. CDC. Prevention and control of influenza-recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1999;48(no. RR-4).

Contributors to the Production of the MMWR (Weekly) Weekly Notifiable Disease Morbidity Data and 122 Cities Mortality Data

Samuel L. Groseclose, D.V.M., M.P.H.

State Support Team

Robert Fagan
Jose Aponte
Gerald Jones
David Nitschke
Carol A. Worsham

CDC Operations Team

Willie J. Anderson
Patsy A. Hall
Kathryn Snavely

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format and on a paid subscription basis for paper copy. To receive an electronic copy on Friday of each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr-toc. Electronic copy also is available from CDC's World-Wide Web server at http://www.cdc.gov/ or from CDC's file transfer protocol server at ftp.cdc.gov. To subscribe for paper copy, contact Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone (202) 512-1800.

Data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Address inquiries about the MMWR Series, including material to be considered for publication, to: Editor, MMWR Series, Mailstop C-08, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333; telephone (888) 232-3228.

All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

Director, Centers for Disease Control	Director, Epidemiology Program Office	Writers-Editors,
and Prevention	Stephen B. Thacker, M.D., M.Sc.	MMWR (weekly)
Jeffrey P. Koplan, M.D., M.P.H.	Editor, MMWR Series	Jill Crane
Deputy Director, Centers for Disease	John W. Ward, M.D.	David C. Johnson
Control and Prevention	Managing Editor,	Ceresa F. Rutledge
Claire V. Broome, M.D.	MMWR (weekly)	Caran R. Wilbanks
	Karen L. Foster, M.A.	Desktop Publishing
		Morie M. Higgins
		Peter M. Jenkins

U.S. Government Printing Office: 1999-733-228/08007 Region IV

[^0]: *Bangladesh, Bhutan, Democratic People's Republic of Korea (DPR Korea), India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand.
 ${ }^{\dagger}$ Routine measles vaccination provides services in a periodic, repetitive, and predictable manner at fixed sites and through mobile services in areas where fixed services are not available.
 §Poor, densely populated areas (e.g., urban and periurban slums) with low routine vaccination coverage ($<80 \%$).

[^1]: «AFP rate of ≥ 1 per 100,000 children aged <15 years, and two stool samples collected in $\geq 80 \%$ of AFP cases.

[^2]: -:no reported cases

 * Not notifiable in all states.
 ${ }_{\S}^{\dagger}$ Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases (NCID).
 \S Updated monthly from reports to the Division of HIV/AIDS Prevention-Surveillance and Epidemiology, National Center for
 HIV, STD, and TB Prevention (NCHSTP), last update May 23, 1999.
 \llbracket Updated from reports to the Division of STD Prevention, NCHSTP.

[^3]: N : Not notifiable U: Unavailable $\quad-:$ no reported cases

